Space-Time Robust Video Representation for Action Recognition
نویسندگان
چکیده
We address the problem of action recognition in unconstrained videos. We propose a novel content driven pooling that leverages space-time context while being robust toward global space-time transformations. Being robust to such transformations is of primary importance in unconstrained videos where the action localizations can drastically shift between frames. Our pooling identifies regions of interest using video structural cues estimated by different saliency functions. To combine the different structural information, we introduce an iterative structure learning algorithm, WSVM (weighted SVM), that determines the optimal saliency layout of an action model through a sparse regularizer. A new optimization method is proposed to solve the WSVM’ highly non-smooth objective function. We evaluate our approach on standard action datasets (KTH, UCF50 and HMDB). Most noticeably, the accuracy of our algorithm reaches 51.8% on the challenging HMDB dataset which outperforms the state-of-the-art of 7.3% relatively.
منابع مشابه
Action Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملVideo-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملFusing appearance and distribution information of interest points for action recognition
Most of the existing action recognition methods represent actions as bags of space-time interest points. Specifically, space-time interest points are detected from the video and described using appearancebased descriptors. Each descriptor is then classified as a video-word and a histogram of these videowords is used for recognition. These methods therefore rely solely on the discriminative powe...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملSupervised Statistical . . . Human Action Recognition in Video
This thesis addresses the problem of human action recognition in realistic video data,such as movies and online videos. Automatic and accurate recognition of human actionsin video is a fascinating capability. The potential applications range from surveillanceand robotics to medical diagnosis, content-based video retrieval, and intelligent human-computer interfaces. The task is h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013